ParM
parm
A molecular dynamics library
|
The basic Interaction class, used to represent a potential function. More...
#include <interaction.hpp>
Public Member Functions | |
virtual flt | energy (Box &box)=0 |
Potential energy due to this Interaction. More... | |
virtual void | set_forces (Box &box)=0 |
virtual flt | set_forces_get_pressure (Box &box) |
Set forces (Atom.f ) and return \(P = \sum_{\left<i,j \right>} \vec r_{ij} \cdot \vec F_{ij}\) at the same time (see pressure() ). More... | |
virtual flt | pressure (Box &box)=0 |
Partial pressure due to this Interaction. More... | |
virtual Matrix | stress (Box &box) |
The force-moment tensor for the current simulation: More... | |
virtual | ~Interaction () |
The basic Interaction class, used to represent a potential function.
Specific interactions should derive from this.
|
inlinevirtual |
Potential energy due to this Interaction.
Implemented in SCSpringList, SoftWallCylinder, SoftWall, Charges, NListedVirial< A, P >, NListed< A, P >, SimpleListed< A, P >, SCBoxed< A, P >, Dihedrals, AngleTriples, BondPairs, RandomForce, COMSpring, FixedSpring, FixedForceRegion, and FixedForce.
Partial pressure due to this Interaction.
\(P = \sum_{\left<i,j \right>} \vec r_{ij} \cdot \vec F_{ij}\), or equivalently \(P = \sum_i \vec r_i \cdot \vec F_i\)
Note that the full pressure involves all interactions and temperature, and needs to be normalized by \( \frac{1}{dV} \) where \(d\) is the number of dimensions and \(V\) is the volume.
Implemented in SCSpringList, SoftWallCylinder, SoftWall, Charges, NListedVirial< A, P >, NListed< A, P >, SimpleListed< A, P >, SCBoxed< A, P >, Dihedrals, AngleTriples, BondPairs, RandomForce, COMSpring, FixedSpring, FixedForceRegion, and FixedForce.
|
pure virtual |
Set forces (Atom.f
) and return \(P = \sum_{\left<i,j \right>} \vec r_{ij} \cdot \vec F_{ij}\) at the same time (see pressure()
).
Reimplemented in SCSpringList, SoftWallCylinder, SoftWall, NListedVirial< A, P >, NListed< A, P >, SimpleListed< A, P >, SCBoxed< A, P >, Dihedrals, AngleTriples, BondPairs, and RandomForce.
The force-moment tensor for the current simulation:
\(\tau^{\alpha \beta} = \sum_{\left<i,j \right>} r_{ij}^\alpha F_{ij}^\beta\).
At \(T=0\), the stress tensor \(\Sigma = \frac{1}{dV} \tau \).
Reimplemented in SCSpringList, and NListed< A, P >.