def pyparm.packmin.Minimizer.__init__ |
( |
|
self, |
|
|
|
locs, |
|
|
|
diameters, |
|
|
|
masses = None , |
|
|
|
L = 1.0 , |
|
|
|
P = 1e-4 , |
|
|
|
dt = .1 , |
|
|
|
CGerr = 1e-12 , |
|
|
|
Pfrac = 1e-4 , |
|
|
|
need_contacts = False , |
|
|
|
kappa = 10.0 , |
|
|
|
kmax = 1000 , |
|
|
|
secmax = 40 , |
|
|
|
seceps = 1e-20 , |
|
|
|
amax = 2.0 , |
|
|
|
dxmax = 100 , |
|
|
|
stepmax = 1e-3 , |
|
|
|
itersteps = 1000 , |
|
|
|
use_lees_edwards = False |
|
) |
| |
Minimizer to find a packing.
Params
------
itersteps : number of timesteps to take when using iter()
CGerr : Maximum force magnitude allowed
Pfrac : Allowed deviation from given pressure
need_contacts : Require Nc >= Nc_exp to finish
masses : mass of the particles; if None, will be diameters**3
def pyparm.packmin.Minimizer.__iter__ |
( |
|
self | ) |
|
def pyparm.packmin.Minimizer.__next__ |
( |
|
self | ) |
|
def pyparm.packmin.Minimizer.as_packing |
( |
|
self | ) |
|
def pyparm.packmin.Minimizer.diameters |
( |
|
self | ) |
|
def pyparm.packmin.Minimizer.done |
( |
|
self | ) |
|
def pyparm.packmin.Minimizer.equal_mass |
( |
|
diameters, |
|
|
|
ndim |
|
) |
| |
|
static |
def pyparm.packmin.Minimizer.err |
( |
|
self | ) |
|
Returns (delta_pressure, max_force), where delta_pressure = (P / P0) - 1 and max_force is the maximum of all total forces on each atom.
When abs(delta_pressure) < self.Pfrac and max_force < self.CGerr, the
simulation is done (unless need_contacts is also enabled).
def pyparm.packmin.Minimizer.goal_pressure |
( |
|
self | ) |
|
def pyparm.packmin.Minimizer.goal_pressure |
( |
|
self, |
|
|
|
P |
|
) |
| |
def pyparm.packmin.Minimizer.H |
( |
|
self | ) |
|
def pyparm.packmin.Minimizer.L |
( |
|
self | ) |
|
def pyparm.packmin.Minimizer.L |
( |
|
self, |
|
|
|
newL |
|
) |
| |
def pyparm.packmin.Minimizer.locs |
( |
|
self | ) |
|
def pyparm.packmin.Minimizer.N |
( |
|
self | ) |
|
def pyparm.packmin.Minimizer.ndim |
( |
|
self | ) |
|
def pyparm.packmin.Minimizer.overlap |
( |
|
self | ) |
|
def pyparm.packmin.Minimizer.pack_stats |
( |
|
self | ) |
|
Returns (number of backbone contacts, stable number, number of floaters)
def pyparm.packmin.Minimizer.phi |
( |
|
self | ) |
|
def pyparm.packmin.Minimizer.pressure |
( |
|
self | ) |
|
def pyparm.packmin.Minimizer.proportionate_mass |
( |
|
diameters, |
|
|
|
ndim |
|
) |
| |
|
static |
def pyparm.packmin.Minimizer.randomized |
( |
|
cls, |
|
|
|
N = 10 , |
|
|
|
sizes = [1.0 , |
|
|
|
ratios = None , |
|
|
|
ndim = 3 , |
|
|
|
phi0 = 0.01 , |
|
|
|
mass_func = None , |
|
|
|
kw |
|
) |
| |
Minimizer to find a packing.
Params
------
N : Number of particles
sizes : Diameters of particles
ratios : Number ratio of particles. Defaults to [1.0, 1.0, ...]
ndim : Number of dimensions (2 or 3)
phi0 : Initial packing fraction
mass_func : a function that takes (diameters, ndim) and returns a list
of masses. Defaults to Minimizer.proportionate_mass
kw : Extra keyword arguments for Minimizer __init__
def pyparm.packmin.Minimizer.status_str |
( |
|
self | ) |
|
def pyparm.packmin.Minimizer.U |
( |
|
self | ) |
|
def pyparm.packmin.Minimizer.V |
( |
|
self | ) |
|
def pyparm.packmin.Minimizer.vdotv |
( |
|
self | ) |
|
def pyparm.packmin.Minimizer.Vspheres |
( |
|
self | ) |
|
pyparm.packmin.Minimizer.atoms |
pyparm.packmin.Minimizer.box |
pyparm.packmin.Minimizer.CGerr |
pyparm.packmin.Minimizer.collec |
pyparm.packmin.Minimizer.hertz |
pyparm.packmin.Minimizer.itersteps |
pyparm.packmin.Minimizer.masses |
pyparm.packmin.Minimizer.need_contacts |
pyparm.packmin.Minimizer.neighbors |
pyparm.packmin.Minimizer.Pfrac |
pyparm.packmin.Minimizer.sim |
pyparm.packmin.Minimizer.timesteps |
The documentation for this class was generated from the following file: